| | 75 | For example, to generate the transform from coordinate Frame 2 to coordinate Frame 1 (i.e. the position and orientation of Frame 2 described in terms of Frame 1 which is also a rotation about joint 2), use the parameters in the second row of Table 1 as follows: |
| | 76 | |
| | 77 | {{{ |
| | 78 | #!div class="center" align="center" |
| | 79 | {{{ |
| | 80 | #!latex |
| | 81 | $^{0}T_{3}=\left[\begin{array}{cccc} |
| | 82 | c1c2c3-c1s2s3 & -s1 & -c1c2s3-c1s2c3 & 0.435c1c2c3-0.435c1s2s3+0.069s1+0.650c1c2+0.156s1)\\ |
| | 83 | \sin(\theta_{2}) & \cos(\theta_{2})\cos(0) & -\cos(\theta_{2})\sin(0) & 0.650\sin(\theta_{2})\\ |
| | 84 | 0 & \sin(0) & \cos(0) & (0.156)\\ |
| | 85 | 0 & 0 & 0 & 1\end{array}\right]$ |
| | 86 | |
| | 87 | '''Equation 3: D-H Matrix Example''' |
| | 88 | }}} |